

Promove o aumento da absorção de zinco e ferro

Prolonga e potencializa os efeitos da aplicação da toxina botulínica

■ 0 QUE É?

Fitase, quimicamente denominada de mio-inositol hexaquifosfato fosfohidrolase, é uma enzima que promove a degradação de fitatos — principal fonte do mineral fósforo para as plantas. Os fitatos estão presentes principalmente em alimentos de origem vegetal, como na soja, arroz, amendoim, gergelim, cereais, farinhas e pães. Quando ingeridos, os fitatos podem formar complexos insolúveis com minerais elementares, como ferro (Fe) e zinco (Zn), diminuindo a absorção dos mesmos. A fitase pode ser utilizada a fim de promover uma melhora na absorção destes minerais pelo organismo, bem como na medicina estética a fim de prolongar os efeitos da toxina botulínica, podendo ser obtida a partir de plantas, bactérias, leveduras e fungos.^{1,2}

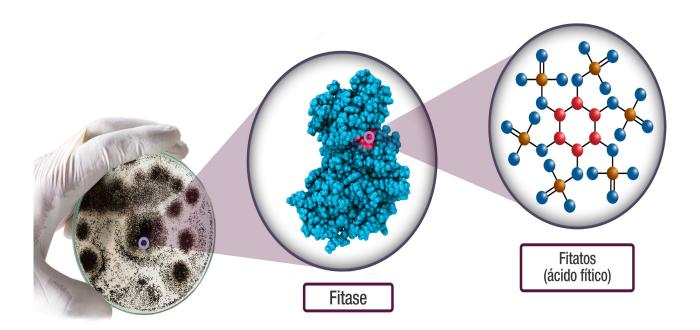


FIGURA 1 - Fitase de origem fúngica (Aspergiullus niger) demonstrando a ligação com fitatos em vermelho. Adaptado de Shutterstock, 2021.

■ QUAL O MECANISMO DE AÇÃO?

Fitatos são compostos orgânicos com propriedades quelantes, compreendendo diferentes formas de sal do ácido fítico (mio-inositol hexaquifosfato). O ácido fítico é constituído por um anel inositol e seis grupamentos de ésteres fosfato formados durante o processo de maturação das sementes e grãos de cereais, sendo a principal fonte de fósforo de alimentos derivados de origem vegetal. Quando ingeridos na dieta, os fitatos formam complexos insolúveis com minerais elementares, principalmente zinco e ferro, diminuindo a sua absorção no intestino delgado e reduzindo sua biodisponibilidade no organismo. Por sua vez, a fitase promove a hidrólise dos ésteres fosfato do anel inositol, resultando na desfosforilação do anel e liberação de fósforo inorgânico e mio-inositol. Desta forma, a capacidade quelante dos fitatos é reduzida, diminuindo a formação de complexos insolúveis e contribuindo para a melhor absorção de minerais essenciais ao organismo.^{1,4,5}

Ainda, a suplementação com fitase prolonga os efeitos da toxina botulínica. A toxina botulínica, obtida através da bactéria *Clostridium botulinum*, é utilizada para fins estéticos com o intuito de reduzir linhas de expressão e rugas profundas. Também é utilizada para condições clínicas como a hiperidrose, distonias oromandibulares, estrabismo, entre outras. Ao ser aplicada pela via intramuscular, a toxina botulínica atua nas terminações pré-sinápticas colinérgicas da junção neuromuscular promovendo o bloqueio na liberação de acetilcolina, o que resulta na diminuição transitória da contratura muscular e, consequentemente, no relaxamento da musculatura e estiramento da pele adjacente à aplicação. No entanto, para ser eficaz, cada molécula de toxina botulínica necessita estar associada a uma molécula de zinco, uma vez que sem a presença deste mineral ocorre a diminuição significativa de seu efeito. Por vezes, o zinco pode não estar disponível em quantidades suficientes na musculatura estriada para que esta associação ocorra. Desta forma, a suplementação com fitase pode favorecer o aumento da biodisponibilidade de zinco, uma vez que promove a hidrólise dos fitatos, diminuindo a formação de compostos insolúveis (Fitato+Zn) e favorecendo a absorção de zinco no duodeno. Ainda, a suplementação combinada de fitase e zinco potencializa ainda mais os efeitos da toxina botulínica, uma vez que ocorre o aporte adequado deste mineral, favorecendo o equilíbrio entre zinco e toxina botulínica no músculo. Como consequência, o efeito da aplicação da toxina é maximizado, favorecendo o desaparecimento de linhas e rugas, e diminuindo o número de intervenções necessárias.^{6,7}

$$\begin{array}{c} PO_4^{-2} \\ PO_4^{-2} \\ PO_4^{-2} \\ PO_4^{-2} \\ PO_4^{-2} \\ PO_4^{-2} \\ \end{array}$$
Fitatos
$$\begin{array}{c} PO_4^{-2} \\ PO_4^{-2} \\ PO_4^{-2} \\ \end{array}$$

$$\begin{array}{c} PO_4^{-2} \\ PO_4^{-2} \\ \end{array}$$

FIGURA 2 - Mecanismo de ação da fitase a partir da degradação do ácido fítico em mio-inositol e fosfato. Adaptado de Shutterstock, 2021.

EVIDÊNCIAS NA LITERATURA

■ AUMENTO DOS NÍVEIS DE ZINCO E FERRO

O zinco é um importante mineral presente em todas as células do organismo e encontrado em maior quantidade nos músculos e ossos. Participa de diversos processos fisiológicos, sendo importante para a atividade de metaloenzimas envolvidas na síntese de ácidos nucleicos. Ainda, está envolvido no metabolismo proteico, na replicação e diferenciação celular e, consequentemente, no crescimento e desenvolvimento de diferentes tecidos do organismo, sendo as necessidades nutricionais deste mineral maiores durante a infância. Através do seu mecanismo de ação, a fitase pode contribuir para o aporte de zinco em crianças e adultos. Desta forma, diversos estudos demonstram que a suplementação com fitase resulta em um aumento da absorção de zinco proveniente da dieta. Em particular, em um estudo realizado com 26 crianças (1,5 a 2 anos de idade), a adição de 588 U de fitase a um suplemento alimentar contendo 4 mg de zinco (ingerido duas vezes ao dia) resultou em uma maior absorção e biodisponibilidade de zinco, indicando o efeito benéfico da suplementação com fitase em aumentar o aporte de minerais

importantes para o crescimento e desenvolvimento do organismo.^{4,9,10}

Ainda, um estudo envolvendo 750 crianças (de 6 meses a 1 ano de idade) avaliou os efeitos da administração de um suplemento alimentar a base de milho contendo fitase (200 U), DHA, ácido araquidônico, lisina e outros nutrientes. O estudo demonstrou que a suplementação com o composto resultou em uma melhora dos índices de crescimento associados à idade e desenvolvimento locomotor. Adicionalmente, a suplementação com fitase aumentou as concentrações de hemoglobina e reduziu o risco de anemias e deficiências de ferro. O ferro é um dos principais minerais envolvidos na eritropoiese (produção de hemácias), atuando também como um componente estrutural importante das moléculas de hemoglobina e mioglobina. Desta forma, o ferro está envolvido no transporte de oxigênio a todos os tecidos do organismo. A suplementação com fitase pode favorecer o aporte nutricional de ferro e outros minerais, contribuindo para o desenvolvimento saudável do organismo, principalmente durante a infância e a idade reprodutiva, quando a necessidade nutricional encontra-se aumentada.^{4,5,11}

■ PROLONGAMENTO DOS EFEITOS DA APLICAÇÃO DA TOXINA BOTULÍNICA

A toxina botulínica é amplamente utilizada na medicina estética, reduzindo linhas e rugas de expressão. A duração dos efeitos provocados a partir da aplicação da toxina botulínica varia de acordo com diversos fatores, sendo em média de dois a quatro meses e se estendendo, ocasionalmente, para seis meses. Diversos fatores influenciam a duração de seus efeitos, o que pode interferir no intervalo de tratamento, custo, adesão dos pacientes e grau de eficácia dos tratamentos. Já foi demonstrado que para que a toxina botulínica exerça sua atividade, se faz necessário a presença de concentrações de zinco biodisponível no músculo. Assim, um estudo randomizado, duplo-cego e controlado por placebo (21 homens e 77 mulheres com idade média de 65 anos) demonstrou que, quando realizada durante os quatro dias que antecedem a aplicação da toxina botulínica, a suplementação diária com 3000 U de fitase por via oral, em associação com 50 mg de citrato de zinco, aumenta a duração e a eficácia deste procedimento. O mesmo efeito não foi observado quando foram administrados placebo ou citrato de zinco isolado antecedendo as aplicações, indicando a importância da associação com fitase para uma melhor biodisponibilidade do mineral. 6,12

SUGESTÃO POSOLÓGICA:

USO ORAL: 200 a 3000 U duas vezes ao dia. **FORMAS FARMACÊUTICAS:** cápsulas

SUGESTÃO DE FORMULAÇÃO:

PROLONGAMENTO DOS EFEITOS DA TOXINA BOTULÍNICA

Fitase 3000 U Citrato de Zinco 50 mg Cápsulas gsp

POSOLOGIA: Administrar uma cápsula, duas vezes ao dia, durante os quatro dias que antecedem o tratamento com toxina botulínica, mantendo no dia das aplicações.

OBSERVAÇÕES

Não existem efeitos colaterais relatados, desde que sejam respeitadas as dosagens indicadas. Para que não haja interação medicamentosa ou com alimentos, é indicado o intervalo de duas horas entre a administração de fitase e outros medicamentos ou suplementos orais.

Este insumo deve ser utilizado sob orientação médica ou de outro profissional de saúde habilitado.

Informativo destinado a profissionais de saúde

LITERATURAS CONSULTADAS

- 1. Kumar V, Sinha AK, Makkar HPS, Becker K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010;120(4):945-959. doi:10.1016/j.foodchem.2009.11.052
- 2. Lei XG, Weaver JD, Mullaney E, Ullah AH, Azain MJ. Phytase, a new life for an "old" enzyme. Annu Rev Anim Biosci. 2013;1:283-309. doi:10.1146/annurev-animal-031412-103717
- 3. Goodsell DS. Phytase. RCSB Protein Data Bank. doi:10.2210/rcsb_pdb/mom_2018_9
- 4. Gibson RS, Raboy V, King JC. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev. 2018;76(11):793-804. doi:10.1093/nutrit/nuy028
- 5. Troesch B, Jing H, Laillou A, Fowler A. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food Nutr Bull. 2013;34(2 Suppl):90-101. doi:10.1177/15648265130342s111
- 6. Wright G, Lax A, Mehta SB. A review of the longevity of effect of botulinum toxin in wrinkle treatments. Br Dent J. 2018;224(4):255-260. doi:10.1038/sj.bdj.2018.126
- 7. Simpson LL, Maksymowych AB, Hao S. The Role of Zinc Binding in the Biological Activity of Botulinum Toxin. J Biol Chem. 2001;276(29):27034-27041. doi:10.1074/jbc.M102172200
- 8. Coban HB, Demirci A. Chapter 2 Phytase as a Diet Ingredient: From Microbial Production to Its Applications in Food and Feed Industry. In: Holban AM, Grumezescu AM, eds. Microbial Production of Food Ingredients and Additives. Handbook of Food Bioengineering. Academic Press; 2017:33-55. doi:https://doi.org/10.1016/B978-0-12-811520-6.00002-7
- 9. Zyba SJ, Wegmüller R, Woodhouse LR, et al. Effect of exogenous phytase added to small-quantity lipid-based nutrient supplements (SQ-LNS) on the fractional and total absorption of zinc from a millet-based porridge consumed with SQ-LNS in young Gambian children: A randomized controlled trial. Am J Clin Nutr. 2019;110(6):1465-1475. doi:10.1093/ajcn/nqz205
- 10. Brnic' M, Wegmu'ller R, Zeder C, Senti G, Hurrell RF. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. J Nutr. 2014;144(9):1467-1473. doi:10.3945/jn.113.185322
- 11. Smuts CM, Matsungo TM, Malan L, et al. Effect of small-quantity lipid-based nutrient supplements on growth, psychomotor development, iron status, and morbidity among 6-to 12-mo-old infants in South Africa: A randomized controlled trial. Am J Clin Nutr. 2019;109(1):55-68. doi:10.1093/ajcn/ngy282
- 12. Koshy JC, Sharabi SE, Feldman EM, Hollier LHJ, Patrinely JR, Soparkar CNS. Effect of dietary zinc and phytase supplementation on botulinum toxin treatments. J Drugs Dermatol. 2012;11(4):507-

Alcântara - Rua Yolanda Saad Abuzaid, 150, lojas 118/119. Telefone (21) 2601-1130 Centro / Zé Garoto - Rua Coronel Serrado, 1630, lojas 102/103. Telefone (21) 2605-1349

